$解:(2)延長DG交BC于點M,作DN⊥BC,交BC于點N,交AB于點H$
$∵由題意,得DM⊥AB,∠ACB=90°$
$∴∠MGB=∠ACB=90°$
$∵在Rt△ABC中,tan∠ABC=\frac {AC}{BC}=\frac 1 2$
$∴在Rt△GMB中,tan∠ABC=\frac {GM}{BG}=\frac 1 2$
$∵BG=3.5+2.5=6(\mathrm {m})$
$∴GM=3m$
$∵由題意,得DG=EF=2m$
$∴DM=DG+GM=5m$
$∵DN⊥BC$
$∴∠DNB=90°$
$∴∠ABC+∠NHB=90\geqslant$
$∵∠MGB=90°$
$∴∠GDH+∠GHD=90°$
$又∵∠GHD=∠NHB$
$∴∠GDH=∠ABC$
$∴tan∠GDH= tan∠ABC=\frac 12=\frac {MN}{DN}$
$設(shè)MN=xm,則DN=2xm$
$在Rt△DMN中,{x}^{2}+{(2x)}^{2}={5}^{2}$
$解得,x=\sqrt {5}(負值舍去)$
$∴DN≈4.5m$
$∴點D到地面的高約為4.5m$