$解:過點C作CF⊥AB于點F.$
$設(shè)小正方形的邊長為a(a>0),則BC=2a,點A到BC的距離h=2a$
$由勾股定理,得AB=\sqrt {{(4a)}^{2}+{(2a)}^{2}}=2\sqrt {5}a$
$AC=\sqrt {{(2a)}^{2}+{(2a)}^{2}}=2\sqrt {2}a$
$由三角形的面積公式,得\frac 1 2AB·CF=\frac 1 2BC·h$
$即\frac 12×2\sqrt {5}a×CF=\frac 1 2×2a×2a,解得CF=\frac {2\sqrt {5}}5a$
$在Rt△AFC中,由勾股定理,得AF=\sqrt {{AC}^{2}-{CF}^{2}}=\frac {6\sqrt {5}}5a$
$∴tan∠BAC=\frac {CF}{AF}=\frac 1 3$
$∴sin∠BAC=\frac {CF}{AC}=\frac {\sqrt {10}}{10},cos∠BAC=\frac {AF}{AC}=\frac {3\sqrt {10}}{10}$