$解:過點(diǎn)A作AD⊥BC,垂足為點(diǎn)D,$
$如圖所示:$
$設(shè)AC=x,則AB=\sqrt{2}x, $
$在Rt△ACD中,AD=ACsinC=\frac{\sqrt{2}}{2}x,$
$CD=ACcosC=\frac{\sqrt{2}}{2}x, $
$在Rt△ABD中,AB=\sqrt{2}x,AD=\frac{\sqrt{2}}{2}x, $
$∴BD=\sqrt{A{B}^{2}-A{D}^{2}}=\frac{\sqrt{6}}{2}x,$
$∴BC=BD+CD=\frac{\sqrt{6}}{2}x+\frac{\sqrt{2}}{2}x=\sqrt{6}+\sqrt{2}$
$解得x=2,$
$∴AC=2. $