$證明:(1)∵四邊形ABCD是平行四邊形,$
$∴AD=BC,AD//BC.\ $
$∵BE=DF,$
$∴AD-DF=BC-BE,即AF=EC.$
$∴四邊形AECF是平行四邊形$
$∵AC=EF,$
$∴四邊形AECF是矩形$
$(2)∵四邊形AECF是矩形,$
$∴∠AEC=∠AEB=90°$
$∴在Rt△AEB 中,AE2+BE2=AB2.\ $
$∵ AE=BE,AB=2,$
$∴AE2+AE2=4.\ $
$∴ AE= \sqrt{2}=BE.\ $
$∵ 在 Rt△AEC 中,tan∠ACB=\frac{AE}{EC}=\frac{1}{2},$
$∴ EC=2AE=2 \sqrt{2}$
$∴ BC=BE+EC=\sqrt{2}+2\sqrt{2}=3\sqrt{2}$