$解:(2) ∵ BC=BE,$
$∴ S_{△BAE}=S_{△ABC}= \frac {1}{2}\ \mathrm {S}_{△ACE}.$
$∵ OB=OA,$
$∴ ∠OBA=∠OAB.$
$∵ ∠BAC=90°,∠OAE=90°,$
$∴ ∠OBA +∠ACE=90°,∠OAB +∠BAE=90°,$
$∴ ∠ACE=∠BAE.$
$又 ∵ ∠E=∠E.$
$∴ △ACE∽△BAE$
$∴ \frac {S_{△ACE}}{S_{△BAE}} = \frac {AC2}{BA2} =2.$
$設BA2=x,則AC2=2x。$
$∴ 在Rt△BAC中,BC2=AC2+BA2=3x,$
$∴ \frac {AC2}{BC2} = \frac {2x}{3x} = \frac {2}{3} .$
$由(1),得△ABC∽△DAC,$
$∴ \frac {S_{△DAC}}{S_{△ABC}} = \frac {AC2}{BC2} = \frac {2}{3} ,$
$即 \frac {S_{△ACD}}{S_{△BAE}} = \frac {2}{3} ,$
$∴ S_{△ACD}= \frac {2}{3}S_{△BAE},$
$∴ m=\frac {2}{3}$