$證明:(1)∵△DAC、△EBC均是等邊$
$三角形,$
$∴AC=DC,EC=BC,∠ACD=∠BCE=60°, $
$∴∠ACD+∠DCE=∠BCE+∠DCE,$
$即∠ACE=∠DCB. $
$在△ACE和△DCB中, $
$\left\{ \begin{array}{l}{AC=DC} \\ {∠ACE=∠DCB} \\ {EC=BC} \end{array} \right. $
$∴△ACE≌△DCB. $
$∴∠CAE=∠CDB,即∠CAM=∠CDN. $
$∵△DAC、△EBC均是等邊三角形, $
$∴AC=DC,∠ACM=∠BCE=60°. $
$又點(diǎn)A、C、B在同一條直線上, $
$∴∠DCE=180°-∠ACD-∠BCE=180°-60°-60°=60°, $
$即∠DCN=60°.∴∠ACM=∠DCN. $
$在△ACM和△DCN中, $
$\left\{ \begin{array}{l}{∠CAM=∠CDN} \\ {AC=DC} \\ {∠ACM=∠DCN} \end{array} \right. $
$∴△ACM≌△DCN. $
$∴CM=CN.又∠DCN=60°, $
$∴△CMN為等邊三角形. $