$證明:在AC上截取AF=AE,連接OF$
$∵AD平分∠BAC$
$∴∠EAO=∠FAO$
$在△AEO與△AFO中$
$\begin{cases}{ AE=AF }\\{∠EAO=∠FAO} \\ {AO=AO} \end{cases}$
$∴△AEO≌△AFO(\mathrm {SAS})$
$∴∠AOE=∠AOF$
$∵AD,CE分別平分∠BAC,∠ACB$
$∴∠ECA+∠DAC=\frac{1}{2}∠ACB+\frac{1}{2}∠BAC$
$=\frac{1}{2}(∠ACB+∠ABC)$
$=\frac{1}{2}×(180°-∠ B)= 60°$
$則∠AOC=180°-∠ECA-∠DAC= 120°$
$∴∠AOC=∠DOE= 120°,∠AOE=∠COD=∠AOF=60°$
$則∠COF= 60°$
$∴∠COD=∠COF$
$在△FOC與△DOC中$
$\begin{cases}{ ∠COF=∠COD }\\{CO=CO} \\ {∠FCO=∠DCO} \end{cases}$
$∴△FOC≌△DOC(\mathrm {ASA})$
$∴DC=FC$
$∵AC=AF+FC$
$∴AC=AE+CD$