$證明: (1)由題意得: A C=B C, \angle A C B=90^{\circ},\ $
$A D \perp D E, B E \perp D E,\ $
$\therefore \angle A D C=\angle C E B=90^{\circ},\ $
$\therefore \angle A C D+\angle B C E=90^{\circ}, \angle A C D+\angle D A C=90^{\circ},$
$\ \therefore \angle B C E=\angle D A C,$
$在\triangle A D C 和 \triangle C E B中,\ \ $
$\left\{\begin{array}{l}\angle A D C=\angle C E B \\ \angle D A C=\angle B C E \text {, } \\ A C=B C\end{array}\right.$
$\therefore \triangle A D C \cong \triangle C E B(\mathrm{AAS}) $