$證明:(3)如圖,延長 BF 到點G,使得FG=FB,$
$連接AG$
$∵AF⊥BG$
$∴∠AFB=∠AFG=90°$
$在△AFB和△AFG中$
${{\begin{cases}{{BF=GF}}\\{∠AFB=∠AFG}\\{AF=AF}\end{cases}}}$
$∴△AFB≌AFG(\mathrm {SAS})\ $
$∴AB=AG,∠ABF=∠G$
$∵△ABC≌△ADE,AB=AD$
$∴ AG=AD,∠CBA = ∠EDA,CB=ED\\ $
$∴∠ABF=∠CDA$
$∴∠G=∠CDA$
$在△CGA和△CDA中$
${{\begin{cases}{{∠GCA=∠DCA=45°}}\\{∠G=∠CDA}\\{AG=AD}\end{cases}}}$
$∴△CGA≌△CDA(\mathrm {AAS})$
$∴CG=CD$
$∵ CG=CB+BF+FG=CB+2BF=DE+2BF\\ $
$∴CD=2BF+DE$