解:??$(1)$??如圖??$②$??,??$ \triangle A B C $??中,??$ ∠A=n°=45°$??,
??$∠A B C=65°$??,
∴??$∠C=180°-45°-65°=70°$??,
∵??$B D=B C$??,
∴??$∠B D C=∠C=70°$??,
∴??$∠D B C=180°-2 ×70°=40°$??,
∴??$∠A B D=65°-40°=25° $??。
??$(2)$??如圖??$③$??,??$ ∠D' B C=180°-2\ \mathrm {n}°$??, 理由是:
設(shè)??$ ∠B D C=∠C=α$??,
∴??$∠D B C=180°-2 α$??,
??$\triangle A D B $??中,??$ ∠B D C=∠D A B+∠A B D$??,
即??$ α=n°+∠A B D$??,
∴??$∠A B D=α-n°$??,
由翻折得:??$ ∠A B D'=∠A B D=α-n°$??,
∴??$∠D' B C=∠D' B D+∠D B C$??
??$=2 ∠A B D+∠D B C$??
??$=2(α-n°)+(180°-2 α)$??
??$=180°-2\ \mathrm {n}°$??
??$(3) \triangle A B F $??是等腰三角形,??$ $??且??$ B F=A B$??, 理由是:
如圖④,??$ $??過??$B$??作??$ B T \perp A C $??于??$T$??,
由折疊得:??$ ∠D' B C=∠D A B$??,
∵??$B E⊥AF$??,
∴??$B E=B T$??,
在??$ R t \triangle A B E $??和??$Rt \triangle A B T $??中,
??$\begin {cases}{B E=B T}\\{ A B=A B}\end {cases}$??
∴??$Rt \triangle A B E \cong Rt \triangle A B T(H L)$??,
∴??$A E=A T$??,
∵??$A D=A D'$??,
∴??$D T=D' E=T C$??,
∴??$\frac {1}{2}(A D+A C)=A T$??,
∵??$E F=\frac {1}{2}(A D+A C)$??,
∴??$A T=E F=A E$??,
∵??$B E \perp A F$??,??$ $??即??$BE$??是??$AF $??的垂直平分線,
∴??$B F=A B$??,
∴??$\triangle A B F $??是等腰三角形??$.$??