解:?$(2)BD^2+CD^2=2AD^2$?,
理由如下:連接?$CE$?,
由?$(1)$?得,?$△BAD≌△CAE$?,
∴?$BD=CE$?,?$∠ACE=∠B$?,
∴?$∠DCE=90°$?,
∴?$CE^2+CD^2=ED^2$?,
在?$Rt△ADE$?中,?$AD^2+AE^2=ED^2$?,又?$AD=AE$?,
∴?$BD^2+CD^2=2AD^2$?;
?$(3)$?如圖?$③$?,作?$AE⊥AD$?,使?$AE=AD$?,連接?$CE$?,?$DE$?,
∵?$∠BAC+∠CAD=∠DAE+∠CAD$?,
∴?$∠BAD=∠CAE$?,
在?$△BAD$?與?$△CAE$?中,
?$\begin {cases}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end {cases}$?
∴?$△BAD≌△CAE(\mathrm {SAS})$?,
∴?$BD=CE=12$?,
∵?$∠ADC=45°$?,?$∠EDA=45°$?,
∴?$∠EDC=90°$?,
∴?$DE^2=CE^2-CD^2=12^2-4^2=128$?,
∵?$∠DAE=90°$?,?$AD^2+AE^2=2AD^2=128$?,
∴?$AD=8.$?