解:?$(1)$?圖中?$△ABE≌△ACD$?,證明如下:
∵?$△ABC$?和?$△ADE$?是等腰直角三角形,
∴?$AB=AC$?,?$AE=AD$?,?$∠BAC=∠DAE=90°.$?
∵?$∠BAE=∠BAC+∠CAE$?,?$∠CAD=∠DAE+∠CAE$?,
∴?$∠BAE=∠CAD.$?
在?$△ABE$?和?$△ACD$?中,
?$\begin {cases}{AB=AC}\\{∠BAE=∠CAD}\\{AE=AD}\end {cases}$?
∴?$△ABE≌△ACD.$?
證明:?$(2)$?∵?$△ABE≌△ACD$?,
∴?$∠ACD=∠ABE=45°.$?
∵?$∠ACB=45°$?,
∴?$∠BCD=∠ACB+∠ACD=90°$?,即?$DC⊥BE.$?