$\ (2)解: \overline{x_{A}}=\frac {19+18+20+22+21}{5}=20$
$\overline{x_{B}}=\frac {16+17+20+23+24}{5}=20$
$S_{A}^2=\frac {1}{5}[(19-20)^2+(18-20)^2..+(20-20)^2+(22-20)^2+(21-20)^2]=2$
$S_{B}^2=\frac {1}{5}[(16-20)^2+(17-20)^2..+(20-20)^2+(23-20)^2+(24-20)^2]=10$
$\because S_{A}^2<S_{B}^2 $
$∴A型號(hào)電視機(jī)的銷量較穩(wěn)定$