$解:設(shè)EC=x\ \mathrm {cm},則DE= (8-x)\ \mathrm {cm}$
$由題意得:△AFE≌△ ADE$
$∴AF=AD=10\ \mathrm {cm} , FE=DE= ( 8-x)\ \mathrm {cm}$
$在Rt△ABF中,由勾股定理得:AB2+BF2= AF2$
$∴ BF=\sqrt{10^2-8^2}=6\ \mathrm {cm}$
$∴CF=BC-BF=10-6=4\ \mathrm {cm}$
$在Rt△CEF中,由勾股定理得:EC2+CF2=FE2$
$即x2+42= ( 8-x)2$
$解得x=3$
$∴EC的長(zhǎng)為3\ \mathrm {cm}$