$解:(1)∵a+\frac {1}{a}=-5,∴\frac{3a^{2}+5a+3}{a}=3a+5+\frac{3}{a}=3(a+\frac{1}{a})+5=-10$
$(2)∵x+\frac{1}{x+1}=9,∴x+1≠0,即x≠-1$
$∴x+1+\frac{1}{x+1}=10$
$∵\frac{x^{2}+5x+5}{x+1}=\frac{(x+1)^{2}+3(x+1)+1}{x+1}=x+1+\frac{1}{x+1}+3=13$
$∴\frac{x+1}{x^{2}+5x+5}=\frac{1}{13}$