$解:∵S_{1}=\frac{1}{a},∴S_{2}=-\frac{a+1}{a}$
$∴S_{3}=-\frac{a}{a+1}$
$∴S_{4}=-\frac{1}{a+1},∴S_{5}=-(a+1)\ $
$∴S_{6}=a,∴S_{7}=\frac{1}{a}···\ $
$∴S_{1}+S_{2}+S_{3}+S_{4}+S_{5}+S_{6}$
$=\frac{1}{a}+(-\frac{a+1}{a})+(-\frac{a}{a+1})+(-\frac{1}{a+1})+[-(a+1)]+a=-3\ $
$∵2022÷6=337$
$∴S_{1}+S_{2}+S_{3}+···+S_{2022}$
$=(-3)×337=-1011 $