$解:設(shè)t=x-3,則x=t+3$
$∵\(yùn)frac{x^{2}-x+7}{x-3}=\frac{(t+3)^{2}-(t+3)+7}{t+3-3}=\frac{t^{2}+5t+13}{t}=t+5+\frac{13}{t}$
$∴\frac{x^{2}-x+7}{x-3}=t+5+\frac{13}{t}=x-3+5+\frac{13}{x-3}=x+2+\frac{13}{x-3}$
$∵x是正整數(shù),分式的值為整數(shù)$
$∴x-3=±1或±13,解得x=4或2或16$