$證明:作DG⊥EA交EA的延長線于點G,$
$BH⊥AC于點H$
$則∠AGD=∠AHB=90°$
$∵∠CAE=90°,∴∠CAG=90°=∠BAD$
$∴∠DAG=∠BAH$
$在△ADG和△ABH中$
$\begin{cases}{ ∠AGD=∠AHB }\ \\ { ∠DAG=∠BAH } \\{ AD=AB} \end{cases}\ $
$∴△ADG≌△ABH(AAS), ∴DG=BH$
$又∵S_{△ABC}=\frac{1}{2}AC×BH$
$S_{△ADE}=\frac{1}{2}AE×DG\ $
$∴S_{△ABC}=S_{△ADE} $