(更多請(qǐng)點(diǎn)擊查看作業(yè)精靈詳解)
(更多請(qǐng)點(diǎn)擊查看作業(yè)精靈詳解)
$證明:連接CF$ $∵△ABC是等邊三角形$ $∴AB=AC,∠BAC=∠ACB=∠ABC=60°$ $∵△ADF是等邊三角形,∴AD=AF,∠DAF=60°$ $∴∠BAC=∠DAF=60°$ $∴∠BAC-∠DAC=∠DAF-∠DAC$ $即∠BAD=∠CAF$ $在△BAD和△CAF中$ ${{\begin{cases} {{AB=AC}} \\ {∠BAD=∠CAF} \\ {AD=AF} \end{cases}}}$ $∴△BAD≌△CAF(SAS) $ $∴∠ACF=∠ABD=60°,BD=CF$ $∵BD=CE,∴CF=CE$ $∴△CEF是等邊三角形$ $∴∠CEF=60°,∴∠CEF=∠ACB=60°$ $∴EF//BC $
$證明:∵∠BAC=90°,∴∠BAD+∠CAE=90°\ $ $∵BD⊥AD,∴∠BDA=90°\ $ $∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE\ $ $∵CE⊥DE,∴∠CEA=90°,∴∠ADB=∠CEA\ $ $在△ADB和△CEA中$ ${{\begin{cases} {{∠ADB=∠CEA}} \\ {∠ABD=∠CAE} \\ {AB=CA} \end{cases}}}$ $∴△ADB≌△CEA(AAS)\ $ $∴AD=CE,BD=AE\ $ $∵DE=DA+AE, ∴DE=BD+CE $
$解:仍然成立,理由如下:\ $ $∵∠DAB+∠BAC+∠CAE=180°$ $∠CAE+∠ACE+∠AEC=180°\ $ $∴∠DAB+∠BAC+∠CAE=∠CAE+∠ACE+∠AEC\ $ $∵∠BAC=∠AEC, ∴∠DAB=∠ACE\ $ $在△ADB和△CEA中$ ${{\begin{cases} {{∠ADB=∠CEA}} \\ {∠DAB=∠ECA} \\ {AB=CA} \end{cases}}}$ $∴△ADB≌△CEA(AAS), ∴AD=CE,BD=AE\ $ $∵DE=DA+AE, ∴DE=BD+CE $
$解:△DFE是等邊三角形,理由如下:\ $ $∵△ADB≌△CEA, ∴∠DBA=∠EAC,BD=EA\ $ $∵△ABF和△ACF均為等邊三角形\ $ $∴BF=AB=AF=AC=CF,∠ABF=∠CAF=60°\ $ $∴∠ABF+∠DBA=∠CAF+∠EAC\ $ $∴∠DBF=∠EAF$ $在△FDB和△FEA中$ ${{\begin{cases} {{BD=AE}} \\ {∠DBF=∠EAF} \\ {BF=AF} \end{cases}}}$ $∴△FDB≌△FEA(SAS)$ $∴DF=EF,∠DFB=∠EFA$ $∵∠DFB+∠DFA=60°,∴∠EFA+∠DFA=60°$ $即∠DFE=60°,∴△DFE是等邊三角形$
|
|