$解:如答圖,作CM⊥y軸于點(diǎn)M$ $∵B(0,2),C(2,-2),∴CM=BO=OM=2,∴BM=4$ $在Rt△AOB和Rt△BMC中$ $\begin{cases}{ AB=BC }\ \\ { BO=CM } \end{cases}$ $∴Rt△AOB≌Rt△BMC(HL)$ $∴AO=BM=4,∴A(-4,0)$
$證明:(1)在Rt△ACE和Rt△BAD中$ $\begin{cases}{ AE=BD }\ \\ {AC=BA\ } \end{cases}$ $∴Rt△ACE≌Rt△BAD(HL),∴CE=AD$ $(2)(更多請(qǐng)點(diǎn)擊查看作業(yè)精靈詳解)$
(更多請(qǐng)點(diǎn)擊查看作業(yè)精靈詳解)
$解:作AM⊥BC于點(diǎn)M,作EN⊥BC于點(diǎn)N\ $ $∴∠END=90°$ $在△ABC中,∵AB=AC,∠BAC=90°,AM⊥BC,$ $∴AM=MB=CM,∠AMD=90°\ $ $∵AD⊥DE,∴∠ADE=90°\ $ $∴∠ADM+∠EDN=90°,∠EDN+∠NED=90°\ $ $∴∠MDA=∠NED$ $在△AMD和△DNE中$ ${{\begin{cases} {{∠AMD=∠DNE}} \\ {∠ADM=∠DEN} \\ {AD=DE} \end{cases}}}$ $∴△AMD≌△DNE(AAS)\ $ $∴DM=EN,DN=AM=BM$ $∴DN-MN=BM-NM\ $ $∴BN=DM=EN,∴∠DBE=∠BEN=45° $
$證明:∵Rt△ACE≌Rt△BAD,∴∠E=∠ADB\ $ $∵∠CFE=∠ADB,∴∠CFE=∠E\ $ $∵∠ACE+∠DAB=180°,∴CE//AB,∴∠E=∠FAB\ $ $∵∠CFE=∠AFB,∴∠BAF=∠AFB\ $ $∵∠ADB=∠E=∠EAB,∴AE⊥BD\ $ $∴∠EAB+∠ABD=90°,∠AFB+∠FBD=90°\ $ $∴∠ABD=∠FBD,∴BD平分∠ABC $
|
|