$解:∵△ABC和△ADE都是等腰直角三角形\ $
$∴∠ACB=45°,∠D=45°\ $
$∵△ACE≌△ABD,∴∠CEA=∠D=45°$
$①當(dāng)EC=EG時(shí)$
$∠CGE=\frac{1}{2}(180°-45°)=67.5°\ $
$∴∠CAG=∠CGE-∠ACG=67.5°-45°=22.5°$
$②當(dāng)GC=GE時(shí),∠CGE=180°-45°-45°=90°\ $
$∴∠CAG=∠CGE-∠ACG=90°-45°=45°\ $
$③∵∠CGE=∠ACG+∠CAG=45°+∠CAG>45°$
$當(dāng)CE=CG時(shí),∠CGE=∠CEG=45°,與題意不符$
$綜上所述,∠CAG的度數(shù)為22.5°或45° $