$解:同(1)得∠B=∠C=\frac{1}{2}(180°-∠BAC)$
$=90°-\frac{1}{2}α\ $
$∴∠ADC=∠B+∠BAD=90°-\frac{1}{2}α+30°=120°-\frac {1}{2}α$
$∵∠DAC=∠BAC-∠BAD=α-30°,AD=AE\ $
$∴∠ADE=∠AED=\frac{1}{2}(180°-∠DAC)$
$=105°-\frac{1}{2}α$
$∴∠EDC = ∠ADC-∠ADE\ $
$= (120°-\frac{1}{2}α)-(105°-\frac{1}{2}α)=15°$