$證明:連接圓心O與C點(diǎn),$
$∵OC=OF,$
$∴∠OCF=∠OFC,$
$∵∠OFC=∠DFA,$
$∴∠OCF=∠DFA,$
$在正方形ABCD中,$
$DA=DC,∠ADB=∠CDB=45°,$
$在△ADE和△CDE中,$
$\begin{cases}{DA=DC }\\{∠ADE=∠CDE} \\ {DE=DE} \end{cases}$
$∴△ADE≌△CDE(\mathrm {SAS}),$
$∴∠DAE=∠DCE, $
$∵∠DAE+∠DFE=90°,$
$∴∠DCE+∠OCF=90°,$
$即∠OCE=90°,∵OC⊥CE且C在圓上,$
$∴CE是圓的切線. $