解:?$(1)②$?存在,?$BM=4MN$?,理由如下:
∵?$AP=8\ \mathrm {cm}$?,?$AB=32\ \mathrm {cm}$?,∴?$BP=24\ \mathrm {cm}$?
當?$t=8$?時,點?$M$?,?$N$?同時到達點?$B$?
∴當?$0<t<8$?時,?$AM=4t$?,?$PN=3t$?
當?$0<t≤2$?時,?$MP=8-4t$?
∴?$MN=MP+NP=8-4t+3t=8-t$?
當?$2<t<8$?時,?$MP=4t-8$?
?$MN=NP-MP=3t-(4t-8)=8-t$?
∵?$BM=32-4t=4(8-t)$?
∴?$BM=4MN$?
當?$t>8$?時,?$AM=4t$?,?$PN=3t$?
∴?$AN=8+3t$?
∴?$MN=AM-AN=4t-8-3t=t-8$?
∵?$BM=4t-32=4(t-8)$?
∴?$BM=4MN$?
綜上所述,?$BM=4MN$?
?$(2)①$?點?$M$?在點?$B$?的左邊,點?$N$?在點?$M$?的左邊
則?$AP=32-4-3-\frac {32-4}{4}×3=4(\mathrm {cm})$?
∴?$\frac {AP}{PB}=\frac {4}{32-4}=\frac {1}{7}$?
?$②$?點?$M$?在點?$B$?的左邊,點?$N$?在點?$M$?的右邊
則?$AP=32-4+3-\frac {32-4}{4}×3=10(\mathrm {cm})$?
∴?$\frac {AP}{PB}=\frac {10}{32-10}=\frac {5}{11}$?
?$ ③$?點?$M$?在點?$B$?的右邊,點?$N$?在點?$M$?的左邊
則?$AP=32+4-3-\frac {32+4}{4}×3=6(\mathrm {cm})$?
∴?$\frac {AP}{PB}=\frac {6}{32-6}=\frac {3}{13}$?
?$④$?點?$M$?在點?$B$?的右邊,點?$N$?在點?$M$?的右邊
則?$AP=32+4+3-\frac {32+4}{4}×3=12(\mathrm {cm})$?
∴?$\frac {AP}{PB}=\frac {12}{32-12}=\frac {3}{5}$?
故?$\frac {AP}{PB}$?的值為?$\frac {1}{7}$?或?$\frac {5}{11}$?或?$\frac {3}{13}$?或?$\frac {3}{5}$?