解:①設(shè)此函數(shù)圖像對(duì)應(yīng)的一次函數(shù)解析式為y=kx+b(k≠0)
觀察圖像可知,直線經(jīng)過點(diǎn)(0,2)和(-3,-2)則可得:
$\left\{ \begin{array}{l}{2=0+b} \\ {-2=-3k+b} \end{array} \right.$
解得 $\left\{ \begin{array}{l}{k=\frac{4}{3}} \\ {b=2} \end{array} \right.$
∴這個(gè)函數(shù)圖像對(duì)應(yīng)的函數(shù)表達(dá)式是y= $\frac{4}{3}$x+2
②設(shè)此函數(shù)圖像對(duì)應(yīng)的一次函數(shù)解析式為y=kx(k≠0)
觀察圖像可知,直線經(jīng)過點(diǎn)(2,-3),則可得:-3=2k
解得 $k=-\frac{3}{2}$
∴這個(gè)函數(shù)圖像對(duì)應(yīng)的函數(shù)表達(dá)式是y= $-\frac{3}{2}$x
③設(shè)此函數(shù)圖像對(duì)應(yīng)的一次函數(shù)解析式為y=kx+b(k≠0)
觀察圖像可知,直線經(jīng)過點(diǎn)(2,-4)和(-2,3),則可得:
$\left\{ \begin{array}{l}{-4=2k+b} \\ {3=-2k+b} \end{array} \right.$
解得 $\left\{ \begin{array}{l}{k=-\frac{7}{4}} \\ {b=-\frac{1}{2}} \end{array} \right.$
∴這個(gè)函數(shù)圖像對(duì)應(yīng)的函數(shù)表達(dá)式是y= $-\frac{7}{4}$x- $\frac{1}{2}$