$ 解:(1)DE//AB,理由如下:$
$從圖②可知BE長度的函數(shù)解析式經(jīng)過(3,4)與(6,0)$
$設(shè)函數(shù)解析式為y=kx+b,代入兩點(diǎn)得$
$\begin{cases}{ 3k+b=4 }\ \\ { 6k+b=0 } \end{cases}$
$解得\begin{cases}{k=-\frac43\ }\ \\ {b=9\ } \end{cases}$
$y=-\frac43x+8$
$CE=BC-BE =\frac43x$
$在Rt△ABC中AC=\sqrt{AB^2-BC^2}=6$
$∵\(yùn)frac {CD}{CA}=\frac {CE}{CB}=\frac {x}{6}$
$∴DE//AB$
$(2)當(dāng)0<x≤3時(shí),點(diǎn)M不在三角形外,△DME與$
$△ABC重疊部分面積為△DME的面積$
$S=\frac12×x×\frac43x=\frac23x^2$
$當(dāng)x=3時(shí),S_{max}=\frac23×3^2=6$
$當(dāng)3\lt x≤6時(shí),點(diǎn)M在三角形外,如圖所示$
$∵DE//AB$
$∴DE=\frac {CD×AB}{AC}=\frac53x$
$由翻折性質(zhì)可知CM⊥DE,△CDE≌△MDE$
$∴S_{四邊形CDME}=\frac12DE×CM=x×\frac43x$
$∴CM=2CQ=\frac85x$
$∵S_{△ABC}=\frac12×AC×BC=\frac12×AB×CF$
$∴CF=\frac {24}{5}$
$MF=CM-CF=\frac {8}{5}x-\frac {24}{5}$