$解:在Rt↑ABC中AB=\sqrt{AC^2+BC^2}=10cm$
$⊙O半徑為4cm$
$①當(dāng)△ABC的邊AC與⊙O相切于點(diǎn)E時(shí)$
$OE=\frac12DE=4cm$
$t=\frac {6-4}{1}=2s$
$②當(dāng)AB與⊙O相切時(shí)$
$∵∠B=∠B,∠ACB=∠OFB=90°$
$∴△ABC∽△OBF$
$BO=\frac {OF×AB}{AC}=\frac {20}{3}cm$
$OC=BC-BO=\frac43cm$
$t=\frac {6+\frac43}{1}=\frac {22}{3}s$
$③當(dāng)AC與⊙O相切于D點(diǎn)時(shí)$
$t=\frac {6+4}{1}=10s$
$④當(dāng)AB所在直線與⊙O相切時(shí)$
$∵∠OGB=∠ACB=90°,∠OBG=∠ABC$
$∴△OBG∽△ABC$
$∴OB=\frac {AB×OG}{AC}=\frac {20}{3}cm$
$t=\frac {6+\frac {20}{3}+8}{1}=\frac {62}{3}s$