$(3)解:設(shè)AE=a,則AD=na,若AD=4AB,則AB=\frac{n}{4}a$
$如圖2,當(dāng)點(diǎn)F落在線段BC上時(shí)EF=AE=AB=a,此時(shí)\frac{n}{4}a=a$
$∴n=4$
$∴當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí),n>4$
$∵點(diǎn)F落在矩形內(nèi)部,點(diǎn)G在AD上$
$∴∠FCG<∠BCD$
$∴∠FCG<90°$
$①當(dāng)∠CFG=90°時(shí)$
$如圖3,則點(diǎn)F落在AC上$
$由(2)得,\frac{AD}{AB}=\sqrt{n}$
$∴n=16$
$②當(dāng)∠CGF=90°時(shí),則∠CGD+∠AGF=90°$
$∵∠FAG+∠AGF=90°$
$∴∠CGD=∠FAG=∠ABE$
$∵∠BAE=∠D=90°$
$∴△ABE∽△DGC$
$∴\frac{AB}{DG}=\frac{AE}{DC}$
$∴AB×DC=DG×AE$
$∵DG=AD-AE-EG=na-2a=(n?2)a$
$∴(\frac{n}{4}a)^2=(n?2)a·a$
$∴n=8+4\sqrt{2}或n=8-4\sqrt{2}(舍)$
$∴當(dāng)n=16或n=8+4\sqrt{2}時(shí),$
$以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角$
$三角形$