$ 解:當(dāng)0<t≤\frac{2}{3}時(shí)$
$S=\frac{16}{9}-\frac{1}{2}×t×2t=-t^2+\frac{16}{9}$
$當(dāng)\frac{2}{3}<t≤\frac{4}{3}時(shí)$
$S=\frac{1}{2}[(\frac{4}{3}-t)+(2-t)]×\frac{4}{3}=-\frac{4}{3}t+\frac{20}{9}$
$當(dāng)\frac{4}{3}<t≤2時(shí)$
$S=\frac{1}{2}×(2-t)×(4-2t)=t^2-4t+4$