$ 解:(1)BD=CF,理由如下:$
$由題意得,∠CAF=∠BAD=θ $
$在△ACF和△ABD中$
${{\begin{cases} {{AC=AB}}\\ {∠CAF=∠BAD}\\ {FA=DA} \end{cases}}}$
$∴△ACF≌△ABD(SAS)$
$∴BD=CF$
$(2)如圖所示$
$連接DF,延長AB交DF于M,$
$∵四邊形ADEF是正方形,AD=3\sqrt{2},AB=2,$
$∴AM=DM=3,BM=AM-AB=1,$
$∵△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)45°,$
$∴∠BAD=45°,$
$∴AM⊥DF,$
$∴DB=\sqrt{D{M}^{2}+B{M}^{2}}=\sqrt{10},$
$∵∠MAD=∠MDA=45°,$
$∴∠AMD=90°,$
$又∠DHF=90°,∠MDB=∠HDF,$
$∴△DMB∽△DHF,$
$∴\frac{DM}{DH}=\frac{DB}{DF},$
$即\frac{3}{DH}=\frac{\sqrt{10}}{6},$
$解得,DH=\frac{9\sqrt{10}}{5}$