$(2)解:在y=-x^2+2x+3中,令y=0,得x=3或x=-1$
$∴A(-1,0)$
$∵B(3,0),C(0,3)$
$∴OB=OC,AB=4,BC=3\sqrt{2}$
$∴∠ABC=∠MFB=∠CFE=45°$
$∵C、E、F為頂點(diǎn)的三角形與△ABC相似$
$∴B和F為對應(yīng)點(diǎn)$
$設(shè)E(m,-m^2+2m+3),則F(m,-m+3)$
$∴EF=(-m^2+2m+3)-(-m+3)=-m^2+3m$
$過點(diǎn)F作FN⊥CO于點(diǎn)N$
$則在Rt△CNF中$
$FN=m,CN=OC-ON=3-(-m+3)=m$
$∴CF=\sqrt{m^2+m^2}=\sqrt{2}m$
$①當(dāng)△ABC∽△CFE時(shí)$
$\frac {AB}{CF}=\frac {BC}{EF}$
$∴\frac {4}{\sqrt{2}m}=\frac {3\sqrt{2}}{-m^2+3m}$
$解得m=\frac32或m=0(舍去)$
$∴EF=\frac94$
$②當(dāng)△ABC∽△EFC時(shí)$
$\frac {AB}{EF}=\frac {BC}{CF}$
$∴\frac {4}{-m^2+3m}=\frac {3\sqrt{2}}{\sqrt{2}m}$
$解得m=0(舍去)或m=\frac53$
$∴EF=\frac {20}{9}$
$綜上所述,EF的長度為\frac94或\frac {20}{9}$