$解:解法一(拆二次項(xiàng)):$
$ \begin{aligned}原式&=(x3+x2)+(x2-5x-6) \\ &=x2(x+1)+(x+ 1)(x-6) \\ &=(x+1)(x2+x-6) \\ &=(x+1)(x-2)(x+3) \\ \end{aligned}$
$解法二(拆一次項(xiàng)):$
$ \begin{aligned}原式&=(x3+2x2-8x)+(3x-6) \\ &=x(x2+2x-8)+3(x-2) \\ &=x(x-2)(x+4)+3(x-2) \\ &=(x-2)(x2+4x+3) \\ &=(x-2)(x+1)(x+3) \\ \end{aligned}$
$解法三(拆常數(shù)項(xiàng)):$
$ \begin{aligned}原式&=(x3+1)+(2x2-5x-7) \\ &=(x+1)(x2-x+1)+(x+1)(2x-7) \\ &=(x+1)(x2-x+1+2x-7) \\ &=(x+1)(x2+x-6) \\ &=(x+1)(x-2)(x+3) \\ \end{aligned}$
$解法四(拆二次項(xiàng)與一次項(xiàng)):$
$ \begin{aligned}原式&=(x3+x2)+(x2+x)-(6x+6) \\ &=x2(x+1)+x(x+1)-6(x+1) \\ &=(x+1)(x2+x-6) \\ &=(x+1)(x-2)(x+3) \\ \end{aligned}$