亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第83頁

第83頁

信息發(fā)布者:

C
A
1<AD<5

$45°-\frac{1}{2}α$

$解:(2)延長DP 交AB延長線于點(diǎn) F$
$∵∠BAC+∠CDE=180°$
$∴AF//DE$
$∴∠PFB=∠PDE,∠PBF=∠PED$
$∵P 為BE的中點(diǎn)$
$∴BP=PE$
$在△BPF 和△EPD中$
$\begin{cases}{∠PFB=∠PDE}\\{∠PBF=∠PED}\\{PB=PE}\end{cases}$
$∴△BPF≌ △EPD (\mathrm {AAS})$
$∴BF=DE,PD=PF,S_{△PBF}=S_{△PDE}$
$∴S_{四邊形ABED}=S_{△ADF}$
$∵DC=DE,∴DC=BF$
$∵AB=AC,AC∶CD=3∶5$
$∴AB∶BF=3∶5$
$∴S_{△ABP}∶S_{△BPF}=AB∶BF=3∶5$
$∵S_{△ABP}=6,∴S_{△BPF}=10,則S_{△APF}=16$
$∵PF=PD$
$∴S_{△ADP}=S_{△AFP}$
$∴S_{四邊形ABED}=S_{△ADF}=2S_{△APF}=32$

(更多請點(diǎn)擊查看作業(yè)精靈詳解)
$證明:(3)延長DP 至點(diǎn)F,使得PF=PD,連接BF、AF、AD$

$由(1)同 理易證△DPE≌△FPB(\mathrm {SAS})$
$∴BF=DE=CD,∠E=∠FBP$
$∵∠BAC+∠CDE=180°,$
$且∠ABP+∠BAC+∠CAD+∠ADC+∠CDE+∠E=360°$
$∴∠ABP+∠E+∠CAD+∠ADC=180°$
$∵∠CAD+∠ACD+∠ADC=180°$
$∴∠ABF=∠ABP+∠E=∠ACD$
$在△ABF 和△ACD中$
$\begin{cases}{AB=AC}\\{∠ABF=∠ACD}\\{BF=CD}\end{cases}$
$∴△ABF≌△ACD(\mathrm {SAS})$
$∴AF=AD,∠BAF=∠CAD$
$在△APF 和△APD 中$
$\begin{cases}{AF=AD}\\{AP=AP}\\{PF=PD}\end{cases}$
$∴△APF≌△APD(\mathrm {SSS})$
$∴∠APD=∠APF=180°÷2=90°$
$∵AP=PD,∴∠PAD=45°$
$同理可得,∠PAF=45°$
$∴∠FAD=90°$
$∴∠BAC=90°$
$∴AB⊥AC$