$證明:(3)延長DP 至點(diǎn)F,使得PF=PD,連接BF、AF、AD$
$由(1)同 理易證△DPE≌△FPB(\mathrm {SAS})$
$∴BF=DE=CD,∠E=∠FBP$
$∵∠BAC+∠CDE=180°,$
$且∠ABP+∠BAC+∠CAD+∠ADC+∠CDE+∠E=360°$
$∴∠ABP+∠E+∠CAD+∠ADC=180°$
$∵∠CAD+∠ACD+∠ADC=180°$
$∴∠ABF=∠ABP+∠E=∠ACD$
$在△ABF 和△ACD中$
$\begin{cases}{AB=AC}\\{∠ABF=∠ACD}\\{BF=CD}\end{cases}$
$∴△ABF≌△ACD(\mathrm {SAS})$
$∴AF=AD,∠BAF=∠CAD$
$在△APF 和△APD 中$
$\begin{cases}{AF=AD}\\{AP=AP}\\{PF=PD}\end{cases}$
$∴△APF≌△APD(\mathrm {SSS})$
$∴∠APD=∠APF=180°÷2=90°$
$∵AP=PD,∴∠PAD=45°$
$同理可得,∠PAF=45°$
$∴∠FAD=90°$
$∴∠BAC=90°$
$∴AB⊥AC$