$解:(3)∠BMC=∠POQ或∠POQ+∠BMC=180°,理由如下:$
$①當(dāng)△OPQ 為銳角三角形時,$
$過點(diǎn)B作BG⊥MC于點(diǎn)G,過點(diǎn)Q 作$
$QH⊥MC于點(diǎn)H$
$∵S_{△BMC}=S_{△OPQ}$
$∴\frac{1}{2}MC · BG=\frac{1}{2}OP · QH$
$∵OP 與邊MC恰好重合,即OP=MC$
$∴BG=QH$
$∵M(jìn)C=MB=OP= OQ$
$∴MB=QQ$
$∵BG⊥MC,QH⊥MC$
$∴∠BGM=∠QHO=90°$
$在Rt△BGM和Rt△QHO中$
$\begin{cases}MB=OQ\\BG=QH\end{cases}$
$∴Rt△BGM≌Rt△QHO(\mathrm {HL})$
$∴∠BMG=∠QOH,即∠BMC=∠POQ$
$\ ②當(dāng)△OPQ 為鈍角三角形時,$
$過點(diǎn)B作BS⊥CM于點(diǎn)S,過點(diǎn)Q 作$
$QT⊥PO的延長線于點(diǎn)T$
$∵S_{△BMC}=S_{△OPQ}$
$∴\frac{1}{2}MC · BS=\frac{1}{2}OP · QT$
$OP 與邊MC恰好重合,即OP=MC$
$∴BS=QT$
$∵M(jìn)C=MB=OP=QQ$
$∴MB=OQ$
$∵BS⊥CM,QT⊥OP$
$∴∠T=∠BSM=90°$
$在Rt△BSM和Rt△QTO中$
$\begin{cases}{MB=OQ}\\{BS=QT}\end{cases}$
$∴Rt△BSM≌Rt△QTO(\mathrm {HL})$
$∴∠BMS=∠QOT$
$∵∠POQ+∠QOT=180°$
$∴∠POQ+∠BMS=180°,$
$即∠POQ+∠BMC=180°$