$解:(2)②當(dāng)點(diǎn)D在射線BC上時(shí),α+β=180°$
$\ 理由:$
$∵∠BAC= ∠DAE$
$∴∠BAC+∠CAD=∠DAE+∠CAD$
$∴∠BAD= ∠CAE$
$在△ABD 和△ACE 中$
$\begin{cases}AB=AC\\∠BAD=∠CAE\\AD=AE\end{cases}$
$∴△ABD≌△ACE(\mathrm {SAS})$
$∴∠ABD=∠ACE$
$∵∠BAC+∠ABD+∠BCA=180°$
$∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE$
$=∠BAC+∠BCA+∠B=180°$
$∴α+β=180°$
$點(diǎn)D在射線BC的反向延長線上時(shí),α=β$
$理由:∵∠DAE=∠BAC$
$∴∠DAE+∠EAB=∠BAC+∠EAB$
$∴∠DAB=∠EAC$
$在△ADB和△AEC 中$
$\begin{cases}AD=AE\\∠DAB=∠EAC\\AB=AC\end{cases}$
$∴△ADB≌△AEC(\mathrm {SAS})$
$∴∠ABD=∠ACE$
$∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB$
$∴∠BAC=∠BCE,即α=β$