解:連接?$OA,$?
?$∵OM:$??$OC=3:$??$5,$?
設?$OC=5x,$??$OM=3x,$?
則?$OD=OC=5x,$?
?$∵CD=10,$?
?$∴OM=3,$??$OA=OC=5,$?
?$∵AB⊥CD,$?
?$∴AM=BM=\frac {1}{2}AB,$?
在?$Rt△OAM$?中,?$OA=5,$?
?$AM=\sqrt {OA^2-OM^2}=\sqrt {5^2-3^2}=4,$?
當如圖?$1$?時,?$CM=OC+OM=5+3=8,$?
在?$Rt△ACM$?中,?$AC=\sqrt {AM^2+CM^2}=\sqrt {4^2+8^2}=4\sqrt {5};$?
當如圖?$2$?時,?$CM=OC-OM=5-3=2,$?
在?$Rt△ACM$?中,?$AC=\sqrt {AM^2+MC^2}=\sqrt {4^2+2^2}=2\sqrt {5}.$?
綜上所述,?$AC$?的長為?$4\sqrt {5}$?或?$2\sqrt {5}.$?