亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第67頁

第67頁

信息發(fā)布者:
?$\frac {5π}{6}$?
60°
?$\frac {25π}{9}$?
證明 :?$(1)$?連接?$OE. $?
?$∵ AB$?是?$⊙O$?的直徑, 
?$∴ ∠ACB=90°.$?
?$∵ CE$?平分?$∠ACB,$? 
?$∴ ∠ACE= \frac {1}{2} ∠ACB=45°. $?
?$∵ \widehat{AE}=\widehat{AE},$?
?$∴ ∠AOE=2∠ACE=90°$?
?$∵ EF//AB,$?
?$∴ ∠AOE+∠FEO=180°,$? 
?$∴ ∠FEO=90°,$?
?$∴ OE⊥FE.$?
又?$ ∵ OE$?是?$⊙O$?的半徑,
?$∴ EF $?與?$⊙O$?相切 
?$(2)$?連接?$OG、$??$OC. $?
?$∵ ∠CAB=30°,$??$∠ACB=90°,$?
?$∴ ∠B=60°. $?
?$∵ OB=OC,$?
?$∴ △OBC$?為等邊三角形, 
?$∴ ∠COB=60°,$?
?$∴ ∠AOC=180°-∠COB=120°. $?
?$∵ EG⊥AC,$??$∠ACE=45°,$?
?$∴ ∠MEC=45°. $?
?$∵\widehat{CG}=\widehat{CG},$?
?$ ∴ ∠GOC=2∠MEC=90°,$? 
?$∴ ∠AOG=∠AOC-∠GOC=30°. $?
?$∵ AB=8,$??$AB$?是?$⊙O$?的直徑, 
?$∴ OA=OG=4,$?
?$∴ \widehat{AG}$?的長?$= \frac {30π×4}{180} =\frac {2π}{3}.$?
解:如圖,連接?$OD、$??$BD$?

?$ ∵OA=12$?
?$ ∴OB=OD =12$?
?$ ∵C$?為?$OB$?的中點,?$CD⊥ OB$?
?$ ∴BC=OC=\frac 1 2OB=6,$??$OD=BD$?
?$ ∴OD=BD=OB$?
?$ ∴△BDO$?為等邊三角形
?$ ∴∠DOB=60°$?
在?$Rt△DOC$?中,由勾股定理,得?$DC=\sqrt {{OD}^2-{OC}^2}=\sqrt {{12}^2-{6}^2}=6\sqrt {3}$?
?$ ∴{S}_{涂色部分}={S}_{扇形OAB}-{S}_{扇形OCE}-({S}_{扇形OBD}-{S}_{△OCD})$?
?$ =\frac {100π×{12}^2}{360}-\frac {100π×{6}^2}{360}-(\frac {60π×{12}^2}{360}-\frac 1 2×6×6\sqrt {3})$?
?$ =18\sqrt {3}+6π$
?