證明:?$(1)∵$?正五邊形?$ABCDE,$?
?$∴AB=BC,$??$∠ABM=∠C,$?
∴在?$△ABM$?和?$△BCN$?中
?$\begin{cases}{AB=BC}\\{∠ABM=∠C}\\{BM=CN}\end{cases}$?
?$∴△ABM≌△BCN(\mathrm {SAS}).$?
(2)解:∵△ABM≌△BCN,
?$∴∠BAM=∠CBN,$?
?$∵∠BAM+∠ABP=∠APN,$?
?$∴∠CBN+∠ABP=∠APN=∠ABC=\frac {(5-2)×180°}{5}=108°.$?
即?$∠APN$?的度數(shù)為?$108°.$?