亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第61頁(yè)

第61頁(yè)

信息發(fā)布者:
35
??$\frac {\sqrt{5}}{3}$??
f
證明:??$(1)$??連接??$OD,$??

??$∵PA,PD是⊙O的兩條切線$
$∴PA=PD,PA⊥OA,PD⊥OD,$
$∵OA=OD$
$∴PO垂直平分AD$
$∵AB是⊙O的直徑$
$∴BD⊥AD$
$∴OP//BD??$
??$(2)∵OD=OB,$??
??$∴∠BDO=∠DBO,$??
??$∴∠DOP=∠AOP,$??
在??$△AOP $??和??$△DOP $??中,
??$\begin{cases}{AO=DO}\\{∠AOP=∠DOP}\\{PO=PO}\end{cases}$??
??$∴△AOP≌△DOP(\mathrm {SAS}),$??
??$∴∠PDO=∠PAO,$??
??$∵∠PAO=90°,$??
??$∴∠PDO=90°,$??
即??$OD⊥PD,$??
??$∵OD$??為半徑,
??$∴PD$??是??$⊙O$??的切線.
??$∵△AOP≌△DOP,$??
??$∴PA=PD,$??
∵四邊形??$POBD$??是平行四邊形,
??$∴PD=OB,$??
??$∵OB=OA,$??
??$∴PA=OA,$??
??$∴∠APO=∠AOP,$??
??$∵∠PAO=90°,$??
??$∴∠APO=∠AOP=45°.$??



證明:??$(1)∵$??四邊形??$ABCD$??是正方形,
??$∴∠DAB=∠B=∠D=∠DCB=90°,$????$AB=BC=CD=AD,$??
??$∴DA$??和??$CD$??都是圓??$B$??的切線.
??$∵PQ_{切圓}B$??于??$F,$??
??$∴AP=PF,$????$QF=CQ,$??
??$∴△DPQ$??的周長(zhǎng)是??$DP+DQ+PQ=DP+DQ+PF+QF$??
??$=DP+AP+DQ+CQ=AD+CD=8.$??
∵正方形??$ABCD$??的周長(zhǎng)??$=4×4=16,$??
??$∴△DPQ$??的周長(zhǎng)等于正方形??$ABCD$??的周長(zhǎng)的一半.
??$(2)$??解:∵在??$Rt△PDQ $??中,??$DP^2+DQ^2=PQ^2,$??
??$∴(4-x)^2+(4-CQ)^2=(x+CQ)^2,$??
解得??$CQ=\frac {16-4x}{x+4},$??
??$∴DQ=4-\frac {16-4x}{x+4}=\frac {8x}{x+4}.$??
∵四邊形??$ABCD$??是正方形,
??$∴AD∥BC,$??
??$∴△PDQ∽△MCQ,$??
??$∴\frac {DP}{CM}=\frac {DQ}{CQ},$??即??$\frac {4-x}{y-4}=\frac {\frac {8x}{x+4}}{\frac {16-4x}{x+4}},$??
整理可得??$y=\frac {8}{x}+\frac {1}{2}x.$??
因此??$y$??與??$x$??之間的函數(shù)關(guān)系式是??$y=\frac {8}{x}+\frac {1}{2}x.$?
?