亚洲激情+欧美激情,无码任你躁久久久久久,我的极品美女老婆,性欧美牲交在线视频,亚洲av高清在线一区二区三区

電子課本網(wǎng) 第55頁

第55頁

信息發(fā)布者:
B
①②③④
證明?$:(1)$?如圖,連接?$OC. $?
?$∵C$?為?$\widehat{EB} $?的中點(diǎn), 
?$∴\widehat{EC}=\widehat{BC},$?
?$∴ ∠EAC=∠BAC. $?
?$∵ OA=OC, $?
?$∴ ∠BAC=∠OCA,$?
?$∴ ∠EAC=∠OCA, $?
?$∴ AE//OC, $?
?$∴ ∠ADC=∠OCF.$?
?$∵ CD⊥AE, $?
?$∴ ∠ADC=90°, $?
?$∴ ∠OCF=90°,$?
即?$OC⊥DF.$?
又?$∵ OC$?為?$⊙O$?的半徑, 
?$∴ CD$?是?$⊙O$?的切線
?$(2)$?如圖,過點(diǎn)?$O$?作?$OH⊥AE,$?垂足為?$H.$?
設(shè)?$⊙O$?的半徑為?$r,$?則?$OA=OC=r.$?
?$∵OH⊥AE,OH$?過圓心?$O,$? 
?$∴ ∠DHO=90°,AH=EH.$?
?$∵ ∠ADC=90°,∠OCD=180°-∠OCF=90°,$?
∴ 四邊形?$OCDH$?為矩形, 
?$∴ OH=DC=2,DH=OC=r,$? 
?$∴ EH=DH-DE=r-1,$? 
?$∴ AH=r-1. $?
∵ 在?$Rt△AHO$?中?$,OH2+AH2=OA2, $?
?$∴ 22+(r-1)2=r2,$?
解得?$r=2.5,$? 
?$∴ ⊙O$?的半徑是?$2.5$

?
證明:?$(1)$?連接?$BE,$?
∵四邊形?$ABCD$?是正方形,
?$∴∠BAE=90°,$?
?$∴BE$?是圓?$O$?的直徑,
?$∵∠BAF+∠EAF=90°,$??$∠EAF=∠EBF,$??$∠FBG=∠FAB,$?
?$∴∠FBG+∠EBF=90°,$?
?$∴∠OBG=90°,$?
故?$BG$?是圓?$O$?的切線.
?$(2)$?解:如圖,連接?$OA,$??$OF,$?
∵四邊形?$ABCD$?是正方形,?$BE$?是圓的直徑,
?$∴∠EFD=90°,$??$∠FDE=45°,$?
?$∴∠FED=45°,$?
?$∴∠AOF=90°,$?
?$∵OA=OF=1,$?
?$∴AF^2=AO^2+FO^2=1+1=2,$?
?$∴AF=\sqrt {2},$??$AF=-\sqrt {2}($?舍去).