證明?$:(1)$?如圖,連接?$OC. $?
?$∵C$?為?$\widehat{EB} $?的中點(diǎn),
?$∴\widehat{EC}=\widehat{BC},$?
?$∴ ∠EAC=∠BAC. $?
?$∵ OA=OC, $?
?$∴ ∠BAC=∠OCA,$?
?$∴ ∠EAC=∠OCA, $?
?$∴ AE//OC, $?
?$∴ ∠ADC=∠OCF.$?
?$∵ CD⊥AE, $?
?$∴ ∠ADC=90°, $?
?$∴ ∠OCF=90°,$?
即?$OC⊥DF.$?
又?$∵ OC$?為?$⊙O$?的半徑,
?$∴ CD$?是?$⊙O$?的切線
?$(2)$?如圖,過點(diǎn)?$O$?作?$OH⊥AE,$?垂足為?$H.$?
設(shè)?$⊙O$?的半徑為?$r,$?則?$OA=OC=r.$?
?$∵OH⊥AE,OH$?過圓心?$O,$?
?$∴ ∠DHO=90°,AH=EH.$?
?$∵ ∠ADC=90°,∠OCD=180°-∠OCF=90°,$?
∴ 四邊形?$OCDH$?為矩形,
?$∴ OH=DC=2,DH=OC=r,$?
?$∴ EH=DH-DE=r-1,$?
?$∴ AH=r-1. $?
∵ 在?$Rt△AHO$?中?$,OH2+AH2=OA2, $?
?$∴ 22+(r-1)2=r2,$?
解得?$r=2.5,$?
?$∴ ⊙O$?的半徑是?$2.5$
?