解:設(shè)運(yùn)動時間為?$ts,$?顯然?$0≤t≤3.$?
?$(1)$?過點(diǎn)?$Q{作}QE⊥AB$?于點(diǎn)?$E,$?過點(diǎn)?$A$?作?$AF⊥CD$?于點(diǎn)?$F. $?
?$∵ AB//CD,$??$∠C=90°,$??$AF⊥CD,$??$QE⊥AB,$?
∴ 易得四邊形?$AFCB$?和四邊形?$AFQE$?都為矩形
?$∵ CD=10\ \mathrm {cm},$??$AB=6\ \mathrm {cm},$?
?$∴ CF=6\ \mathrm {cm},$?則?$DF=4\ \mathrm {cm}.$?
?$∵ AD=5\ \mathrm {cm},$?
∴ 在?$Rt△ADF $?中,?$AF= \sqrt{AD2-DF2} =3\ \mathrm {cm},$?
?$∴ EQ=AF=3\ \mathrm {cm}. $?
?$∵ AP=2\ \mathrm {t}\ \mathrm {cm} ,$??$CQ= t\ \mathrm {cm} ,$?
?$∴ PE=(6-3t)\ \mathrm {cm}{或}PE=(3t-6)\ \mathrm {cm}.$?
在?$Rt△PEQ $?中,
?$∵ PE2+EQ2=PQ2,$?
?$∴ (6-3t)2+32=52,$?
解得?$t_1= \frac {2}{3} ,$??$t_2= \frac {10}{3} ($?不合題意,舍去).
答:經(jīng)過?$ \frac {2}{3}\ \mathrm {s},$?點(diǎn)?$P、$??$Q$?之間的距離為?$5\ \mathrm {cm}$?
?$(2)$?不存在,理由:
假設(shè)存在某一時刻,使得?$PD$?恰好平分?$∠APQ,$?
則?$∠APD=∠DPQ.$?
?$∵ AB∥CD,$?
?$∴ ∠APD=∠PDQ,$?
?$∴ ∠PDQ=∠DPQ,$?
?$∴ DQ=PQ. $?
?$∵ PQ2=[32+(6-3t)2]\ \mathrm {cm}2,$??$DQ2=(10-t)2\ \mathrm {cm}2,$?
?$∴ 32+(6-3t)2=(10-t)2,$?
解得?$t_1= \frac {4-3\sqrt{14}}{4} ,$??$t_2= \frac {4+3\sqrt{14}}{4} $?
?$∵ 0≤t≤3,$?
∴ 上述兩解均不合題意,舍去,
∴ 不存在某一時刻,使得?$PD$?恰好平分?$∠APQ.$?