解:∵ 關(guān)于?$x$?的一元二次方程?$x2-2mx+m2-4m-1=0$?有兩個實數(shù)根?$x_{1}、$??$x_{2},$?
?$∴ b2-4ac=(-2m)2-4(m2-4m-1)≥0,$?
即?$m≥- \frac {1}{4} ,$?且?$x_1x_2=m2-4m-1,$??$x_1+x_2=2m. $?
?$∵ (x_1+2)(x_2+2)-2x_1x_2=17, $?
?$∴ x_1x_2+2(x_1+x_2)+4-2x_1x_2=17,$?
即?$2(x_1+x_2)-x_1x_2=13,$?
?$∴ 4m-m2+4m+1=13.$?
整理,得?$m2-8m+12=0,$?
解得?$m_1=2,m_2=6. $?
?$∵ m≥- \frac {1}{4} , $?
∴ 滿足題意的?$m$?的值為?$2$?或?$6$?