$解:∵∠B=90°,AB=3\sqrt {3}, ∠ACB=30°,$
$∴AC=6\sqrt {3}, ∠BAC=60°.\ $
$∵∠EAC=∠ECA=30°,$
$∴ ∠BAE=30°,$
$∴AE=2BE.$
$又AB2+ BE2=AE2,$
$即(3\sqrt {3} )2+BE2=(2BE)2,$
$∴BE=3,AE=6.\ $
$要使△AEQ是直角三角形,$
$則∠AEQ=90°或∠AQE=90°.\ $
$當(dāng)∠AQE=90°時(shí),如圖②,$
$∵ ∠CAE=30°,$
$∴∠AEQ=60°.\ $
$又∠AEB=2∠ECA=60°,$
$∴∠QEC=180°-∠AEB-∠AEQ=60°.$
$由對(duì)稱知∠QEF=∠CEF=\frac{1}{2} ∠QEC=30°=∠FCE,$
$∴ CF=EF.\ $
$∵∠CAE=30°,∠AEF=∠AEQ+∠ QEF=90°,$
$∴AF=2EF=2CF,$
$∴AC=3CF,$
$∴CF=\frac{1}{3} AC=2\sqrt {3} .\ $
$當(dāng)∠AEQ=90°時(shí),過點(diǎn)F作FM⊥BC于M,F(xiàn)N⊥EP于N,如圖③,則FM=FN,$
$∵∠AEQ=90°,∠CAE=30°,$
$∴AQ=2EQ.$
$又AE2+EQ2=AQ2,$
$即62+EQ2=(2EQ)2,$
$∴EQ=2\sqrt {3} ,AQ=4\sqrt {3} ,$
$∴CQ=2\sqrt {3} .$
$設(shè)CF=x,則QF=2\sqrt {3} -x.$
$FM=\frac {1}{2}x,$
$∵∠PQC=∠QEC+∠QCE=60°,∠FNQ=90°,$
$∴∠QFN=30°,$
$∴QN=\frac{1}{2} QF=\frac{1}{2}(2\sqrt {3} -x),$
$FN=\sqrt {QF2-QN2} =\frac{\sqrt{3}}{2}(2\sqrt {3} -x),$
$∴\frac{\sqrt {3} }{2}(2\sqrt {3} -x)=\frac {1}{2}x ,$
$解得x=3\sqrt {3} -3,$
$即CF=3\sqrt {3} -3.$
$綜上,CF的長(zhǎng)為2\sqrt {3} 或3\sqrt {3} -3.\ $