$證明:(1)∵四邊形ABCO是平行四邊形,$
$∴AB//OC,∴∠BAO=∠AOF,$
$由旋轉(zhuǎn)可知,∠BAO=∠OAF,AO=AF,$
$∴∠OAF=∠AOF,即AF=OF.$
$∵AO=AF,∴AF=OF=AO,$
$∴△AOF是等邊三角形.\ $
$由題可知AB=CO=AD=4,$
$∵AD經(jīng)過點O,點A、D在反比例函數(shù)$
$y=\frac{k}{x}的圖像上,由反比例函數(shù)的$
$中心對稱性,可得OA=OD=2,$
$過點A作x軸的垂線,垂足為H,$
$∵△AOF是等邊三角形,$
$∴OH=1,AH=\sqrt{3},∴A(1,\sqrt {3} ),$
$∴k=\sqrt {3} .$
$解:(2)a= \frac{k}{x_{1}} ,b= \frac{k}{x_{2}} ,$
$∴m2= \frac{\frac{k}{x_{1}}+ \ \frac{k}{x_{2}}}{2k}= \frac{x_{1}+x_{2}}{2x_{1}x_{2}} ,$
$∴m2 -n2 = \frac{x_{1}+x_{2}}{2x_{1}x_{2}} -\frac{2}{x_{1}+x_{2}} = \frac{(x_{1}-x_{2})2}{2x_{1}x_{2}(x_{1}+x_{2})} \gt 0,$
$∴m\gt n\gt 0.$
$∵當(dāng)x\gt 0時,y隨x增大而減小,\ $
$\ ∴y_{1}\lt y_{2}.$