$解:將已知的三個(gè)分式分別取倒數(shù),$
$得\frac{a+b}{ab}=3,$
$\frac{b+c}{bc}=4,$
$\frac{c+a}{ca}=5,$
$即\frac{1}{a}+ \frac{1}=3,$
$\frac {1}+\frac {1}{c}=4,$
$\frac {1}{c}+\frac {1}{a}=5,$
$將以上三式相加并整理,$
$得\frac{1}{a} +\frac{1}+\frac{1}{c}=6,$
$通分,得\frac {ab+bc+ca}{abc}=6,$
$即\frac{abc}{ab+bc+ca}=\frac{1}{6}.$