$解:甲兩次買菜的均價為\frac{3+2}{1+1}=2.5(元/千克);\ $
$乙兩次買菜的均價為\frac{3+3}{1+1.5}=2.4(元/千克).\ $
$[數(shù)學思考]\overline{x }_{甲}\ $
$=\frac{am+bm}{m+m}=\frac{a+b}{2},$
$\overline{x }_{乙}=\frac{n+n}{\frac {n}{a}+\frac {n}}=\frac{2n}{\frac {n(b+a)}{ab}}=\frac{2ab}{a+b}.$
$\overline{x }_{甲} ≥\overline{x }_{乙}.理由:\ $
$∵\overline{x }_{甲}-\overline{x }_{乙}=\frac{a+b}{2}-\frac {2a+b} {a+b}$
$=\frac {(a+b)2-4ab}{2(a+b)}\ $
$=\frac{(a-b)2}{2(a+b)} .$
$∵a>0,b>0,(a-b)2≥0,$
$∴\frac{(a-b)2}{2(a+b)}≥0,$
$即\overline{x }_{甲}-\overline{x }_{乙}≥0,$
$∴\overline{x }_{甲}≥\overline{x }_{乙}.$
$[知識遷移]t_{1}< t_{2}.理由:\ $
$∵t_{1}=\frac{s}{v}+\frac{s}{v}=\frac{2s}{v},$
$t_{2}=\frac{s}{v+p}+\frac{s}{v-p}=\frac {s(v-p)+s(v+p) }{(v+p)(v-p)}$
$=\frac{2sv}{v2-p2},$
$∴t_{1}=t_{2}=\frac{2s}{v} -\frac {2sp}{v^{2} -p^{2} }$
$=\frac {2s(v^{2} -p^{2} )-2sv^{2} }{v(v^{2} -p^{2} )}$
$=\frac{-2sp^{2} }{v(v^{2} -p^{2} )} .$
$∴s>0,p>0,v>0,v>p,$
$∴\frac {-2sp^{2} }{v(v^{2} -p^{2}\ )}<0,即t_{1}-t_{2}<0,$
$∴t_{1}<t_{2}.$