$解:如圖,延長AD、CB交于點F,$
$∵CD平分 ∠ACB,∴∠ACD=∠FCD.$
$∵AD⊥CD, ∴∠ADC=∠FDC=90°.$
$在△ACD和△FCD中,$
$\begin{cases}{\ ∠CA D=∠FCD,\ }\ \\ {CD=CD,\ } \\{∠ADC=∠FDC,}\end{cases}\ $
$∴ △ACD≌△FCD(ASA),$
$∴AD=FD,AC=FC=20,$
$∴BF= CF-BC=20-14=6.$
$∵AD=FD,E為AB中點,$
$∴DE為△ABF的中位線,$
$∴DE=\frac{1}{2}BF=3,故DE的長為3.$