$證明:(1)∵四邊形ABCD$
$是正方形,$
$∴OA =OB,∠DAO=45°,$
$∠OBA = 45°,$
$∴∠OA M=∠OBN =135°.$
$∵ ∠EOF=90°,∠AOB=90°,$
$∴∠AOM=∠BON,∴△OAM≌△OBN (A SA ),$
$∴OM=ON,△OMN是等腰直角三角形.$
$解:(2)如圖,過(guò)點(diǎn)O作OH⊥AD于點(diǎn)H,$
$∵正方形的邊長(zhǎng)為2,∴OH=HA=1.$
$∵OE=EM,∴HM=2,$
$∴OM=ON= \sqrt{22+12}=\sqrt{5},$
$∴MN=\sqrt {5+5} = \sqrt{10}.$