證明?$:(1)$?∵將?$ABCD$?沿過點(diǎn)?$A$?的直線?$l$?折疊,
使點(diǎn)?$D$?落到?$AB$?邊上的點(diǎn)?$D′$?處,
∴?$∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,$?
∵?$DE∥AD′,$?
∴?$∠DEA=∠EAD′,$?
∴?$∠DAE=∠EAD′=∠DEA=∠D′EA,$?
∴?$∠DAD′=∠DED′,$?
∴四邊形?$DAD′E$?是平行四邊形,
∴?$DE=AD′,$?
∵四邊形?$ABCD$?是平行四邊形,
∴?$AB∥DC$?且?$AB=DC,$?
∴?$CE∥D′B$?且?$CE=D′B,$?
∴四邊形?$BCED′$?是平行四邊形.
?$(2)$?∵?$BE$?平分?$∠ABC,$?
∴?$∠CBE=∠EBA,$?
∵?$AD∥BC,$?
∴?$∠DAB+∠CBA=180°,$?
∵?$∠DAE=∠BAE,$?
∴?$∠EAB+∠EBA=90°,$?
∴?$∠AEB=90°.$?