證明?$: (1) $?∵ 四邊形?$ A B C D $?是平行四邊形,
∴?$A B=C D, A B / / C D, $?
∴?$∠A B E=∠C D F, $?
∵?$A M=C N, $?
∴?$A M+A B=C N+C D,$?
?$\text { 即 } B M=D N \text {, }$?
在?$ \triangle B E M $?和?$ \triangle D F N $?中,
?$\begin {cases}{B M=D N }\\{∠M B E=∠N D F, }\\{B E=D F}\end {cases}$?
?$(2)$?由?$(1)$?知?$: \triangle B E M \cong \triangle D F N ,$?
∴?$E M=F N, ∠B E M=∠D F N, $?
∴?$180°-∠B E M=180°-∠D F N, $?
∴?$∠M E F=∠N F E, $?
∴?$M E / / F N, $?
∵?$E M=F N,$?
∴ 四邊形?$ M E N F $?是平行四邊形.